
LJO

•_u_tup. _dxo DIV _il uoddns ol posn ur_sf, s uog_._uo$ loR_sl oql m. lffa:x_,. U0A.Up

olndtuo jo lq$!D oql lO.qUO_ol ptm uo.qn_oxo tuors_s lOZlUOOol posn _ao_s SleU!tU

-_ ISNV le.ro^os s,(eId_p so.nldra_ _ql ol uo.n_p_ Ul "suo.n!sod JgliO.nUOa _LV s8 posn

j qo_s s,(elds_ u_eJp Jm_^ '_OlO_o_sl pouoddns mols_s s_.Nde_ oq.L "Jolndmo_

_-I! d(Id uo._odaoo ltrotud!nb_ [¢1._!(I B _q tr0A.UptU01S_Ss_!qde_ puepoqln S ptm

sue^_I ue pub 'urols_s _u.nea_o om.n lt'oa _ 2u.mun_ _qndtuoo 6 em_!S xo_x e _o pos.ud

-moo se_, mms_s oq.L's-mo_ jo _oqtunu _ _o^o VSVN 1e podoIo^op s_d;ouco uo._uom

-2he o:m_,p.m2 otuoq .m_poseq puno_ 2u!sn slom uo.rmmolne lO.nUo_ ogj_n ._ pooue^pe

m.s_uou_. _xizo 1:mpuco ol lrOSn se_ tu_ls_s s!ttL "o-,m_gq:_re _qndmoo .m!m _ uo poseq

uo.u_lnm!s (;_XI,V)[o.uuo_ _9.,W_,L-.'IV_u_. -I_'_ _ p'_lol0A_p P_! VSVN 986I ol _o.ud

_oM snol^e_d t"L

•poq_p oq !1!,_ so.n!p.q_d_ uuoJ_eld uo.n

-ms_Jo_s luo_-n_ oq.L "poq.u:_'op oq ll!_ oml:_.nl:_'_ _o_ndmo_ !m.m _ uo odfomo._I ¢ Su!

-dolo^op _ ldm_ ls.nj oqj, "SVJ,,9 _o 'ur_s_ S uogvtuomv NODVKL/_u_D _lXlolo_d

_zjo l_tudolo^op oql ol 2u_Jl VSVN _q ouop _po_ snO!A_I sossn_s_ uog:os oq.L

punoJ6)loe80"L

•smo_s,_s od_o,.oad ,In_losn,, 'po,m_,oj llnj Su!dOlOAOp u! potuwo I suosso I oql uo _s_qdmo

gl!_ possn_s.tp oq I_t_ tuolsgs od_o_ozd _ _m.dolo^op _oj sluom_.nb_ l_OUO$ oq.L

•mo_s,_s o_ m _:x_. q:_o _oj s!s,qmm f_ol_._ poseq puno.t,5 2u_!^oad jo _doo

-uoo oq_ uo pos_q mms,_s lO.UUOOog_-e,_ a-a ira jo momdopAop o_ m 2u.tP_OI s!_u,_s

f_o_.e.u pu_ _ouep!n_ otuoq_, m. VSVN _q ouop _!_o_ snqA_djo uo!ssn_s_ puno_

-_l_q e tp!A_su.d_l lzod_t _l, "_oIouq:_l uo.r_o_ ZOlOOpooue^p_ _m.sn mols_s

uogemoln_ lOZlUOOo_1 ._ od,_olead _jo ;uomdoloAO p oql _umS l_t_ lx_lo_ _q,I,

"tuels,{$

uollmuolnV NO0 VHJ./Jelueo

VSVN _11 Io luetudoleAep

roll 8UlZl.emmune _.eode,e V

IlOPaN ll!fl

0

-'_ Z]>
< _ -.-_ _n
• "" _ :1>
,*_ 0 1

O r" _..,
"C_ m C'J ,,0

:0

m

Z

,"_C m

G ,.._t%

-'4

0
Z

0 _ Z
0 :_ ,o

,,0 O: .._
0" _ 0
•0 I'_

0

 .todo8 FeuId

UOllemolnv luomoSeUelA[

, oi,q lOalUO;Dagje. I, -qV

....,"i _I"=_" _66 L '_ _eqmeoea

Background

1.2

While the system provided the capability to run simulation experiments of reasonable
complexity the system was difficult to program and the computational resources (stor-

age andspeed)wereseriouslytaxed.A decisionwas made toupgradethesystemtopro-
videthemeanstoexpandthefidelityandflexibilityoftheexperimentalsystemtoallow

thedevelopmentofaresearchprototypewithsignificantlygreaterstoragecapacityand

processingspeed.Alsorequiredwas theabilitytoexpandthesystemtoincludemore

displaypositionswithbettergraphicscapabilitiesforboththesimulatedcontrollerposi-
tionsaswellasthetargetgenerationcontrolpositions.

Workstation Platform

Duringthisperiodworkstationtechnologyhadbeenexploding.Processingspeed,disk

andRAM storagehadincreasedinquantityanddroppedinpricesignificantly.The engi-

neeringworkstationwas rapidlyreplacingthecentralcomputerasthesystemofchoice

formany engineeringapplications.Theseworkstationsgenerallyprovidedcolorgraph-

icscapabilitiesthatofferedgoodperformanceand wererelativelyeasytoprogram.
Otherfeaturesbecomingcommon weretheUnixoperatingsystemanditssuiteofpro-

ductivitytools. High speed networks were generally incorporated making it easy to con-
ncctmany workstationstogethertoexchangedataandshareresources.

NASA procured two Sun Microsystems workstations to explore migrating the ATC sim-
ulation into a distributed workstation environment. The workstation technology seemed
particularly well suited to the ATC automation tool development application. Rather
than having a limited number of several special purpose displays connected at a single
mainframe or mini computer, a system based on a distributed workstation environment
would allow any number of displays to be used with the functionality of each station
beingdeterminedbythesoftwarethatwas executedonit.The same systemcouldbe

used as an ATC control position, target generator control, system execution and moni-
toring. The same position could also be used for development greatly increasing the effi-
ciency of the development process. Disu'ibuting the software over several computers
greatly increased the computational performance available for each task. It was also
easy to expand the system scope by simply procuring additional workstations. Distribut-
ing the software also provided the framework in which to maintain functional divisions
amongst the processes thus keeping the software modules relatively clean, easy to
understand and maintain.

The workstation vendor was chosen for their good support software including color
graphics and windowing capability, their open systems philosophy, and their commit-
ment to remain a leader in cost/performance ratio. This decision has payed out nicely
over the years. We have gone from a 0.5 MIPS (million insmJction per second) Sun 2 to
a40 MIPS SPARCstation2insixyears.Eachupgradeinhardwarehasbeenaccom-

plishedwithout changing any of the code. The same applies to upgrades to the operating
system which have been accomplished with a minimum of development time. Sun has
been challenged on a number of fronts but continue to provide excellent capabilities and
continue to be a leader in the ongoing development of the open systems approach.

2 of 7 Air Traffic Control Flow Management Automation Final Report

General requirements

Table 1 below gives an indication of the rapid progress made in the engineering work-

station computer category using a real world example of two systems procured by

NASA separated by a period of ten years.

TABLE 1. You've Come A Long Way, Babyl

LS111/23 - 1979 SPARCstation I - 1989

Cost (U.S. $) $20,000 $20,000

DISK 2 x 10 megabyte 300 mega-bytes

(typical) (removable platters)

Graphics none high resolution color
graphics

2.0 General requirements

2.1

After procuring the initial Sun workstations several requirements were identified for the

system port from the mini environment to the workstation environment. Many of the

requirements evolved along with the development of the system. While the original sys-

tem was intended only as a lab prototype it was decided to try and make the new system

as useful and full featured as possible.

Useful prototype.

In developing the initial layout of the CTAS system it very quickly become obvious that

is would be relatively easy to create a system that had a high degree of fidelity compared

with operational ATC platforms. For example, in order to create the video maps that are

used to draw the plan view map display it was decided to use data from operational ATC

facilities rather than hand creating a more limited set of graphical features sufficient for

a lab based system. This was done and in the long run saved significant amounts of time

when it became necessary to keep the displays up to date with the operational facilities.

This theme was found to be repeated over and over in the course of the development.

Any attempt to shortcut the path by a implementing a quick fix was found in the long

run to be counter productive. It was always easier to do it right the first time than to fix it

later. On the other hand it is important to recognize that the CTAS development is a

research system and as such is subject to constant revision. Attempts too complete in the

early stages could be counter productive as well as featute_ may be found to be inade-

quate and need to be redone. Thus some kind of balance needs to be struck in what I will

term a "useful prototype". A useful prototype is easiest to describe in context. In the

CTAS several different tools have been developed and are undergoing refinement by
continued simulation testing as well as field evaluations. The evaluation conducted dur-

Air Traffic Control Flow Management Automation Final Report 3 of 7

General requirements

hagthis process can only be carried out if the fidelity of the system being evaluated is
good enough that the subjects using the system are not led to false conclusions by the
limitations of the tool's implementation. Furthermore to gain long term experience the
system to needs to be mature enough that it can be used ha field sites by operational per-
sonnel. The system needs to be able to handle all the configurations and situations that
arise in the real world environment for extended periods of time. This real world experi-
ence is then fed back into the system design resulting ha improvements which are then
furtherrefined in the field. A too complicated project structure would prevent timely
incorporation of these improvements. A useful prototype is a system that is meant to
strike a balance between these conflicting requirements. The system is kept as simple as
possible while still incorporating the features necessary to make it work in the real
world environment. Several characteristics necessary to achieve this balance are
described below.

2.2

2.3

2.4

2.5

Remain Flexible.

In any project of reasonable complexity there are going to be numerous issues that arise
that were not anticipated in the original design. Too rigid a design will make it difficult
or impossible to incorporate the changes necessary without significant delays. In many
ways the "top down" design model does not work in complex, computer based system
prototype development. There are too many unknowns at the outseL More emphasis
needs to be placed on building in the capability to adjust to the unexpected.

Create expansion potential.

There is an adage that you can never have too much closet space. This also applies to
computer system resources. Virtually every parameter will be found to stretch the limits
of capacity. In the early stages of the CTAS project the 0.5 Mips Sun 3s were thought to
process adequate performance for the current system requirements plus some expansion
potential. Today the 40 Mips SPARC 2s seem inadequate to the task and we anxiously
await the advent of the next generation of machines. The same phenomena applies to
RAM and disk storage. This feautre is not got to go away. The best one can do is antici-
pate the need for ever greater resources and to choose the hardware and software plat-
forms that seem best able to evolve along with the requirements.

Benefit from new technologies.

In some ways this is an extension of the previous issue. Primarily this is accomplished
by using commercial off-the-shelf technology whenever possible. It is very difficult to
maintain a large research prototype that contains special purpose hardware and software
since any changes to the research system typically imply an equivalent change to the
special purpose products.

Be amenable to ad-hoc project management.

Typically ha the early stages of the development of a research prototype there are many
ideas being discussed by individuals involved ha the project which are difficult to cap-
lane haexact language or describe ha unequivocal terms. By definition a research project
is one in which the issues being addressed are poorly understood. Meaningful solutions
develope gradually and may require reworking the software modules several times

4 of 7 Air Traffic Control Flow Management Automation Final Report

Generalrequirements

2.6

2.7

before practical solutions are found. Much of the knowledge gained during this period is
passed on through word of mount. Although the CTAS research group was fairly small
initially (four to five people) it was still fairly difficult to coordinate the activities of this
group too tightly without stifling the creative process necessary to further the research
goals. For this reason the computer system that embodies the research concepts needs to
be accessible to the researchers without requiring the researcher to wade through several
layers of software structure or management. For CTAS this meant creating simple cod-
ing standards that were easy to learn and apply. Use of source code control and auto-
mated program build were particularly important both in reducing the learning curve as
well as enforcing a minimal discipline for new staff.

Provide maximum leverage of resources.

Advanced operating systems such as Sun's implementation of Unix generally include
tools developed over time that can significantly reduce development time and enhance
productivity. Many times features that are included in the computer platform or avail-
able off-the-shelf are overlooked and the proverbial wheel is reinvented. In the case of
the Sun OS the tools provided include inter-process communication, networking, data

base management, source code control, program build control tools, symbolic debug-
ging, built in graphics including widget sets, event processing libraries, etc. The small
amount of time invested learning to use these resources pays dividends in the long run.

Build broad foundations from the start.

Even though the CTAS system described in this report is intended as a research proto-
type and not an operational system it is just as important to provide solid foundations on
which to build up and improve the system. Trying to take shortcuts or creating poorly
designed structures makes it difficult or impossible to improve those later in the project.
Figure 1 is meant to illusWate this point graphically. Many software initially make rapid

FIGURE 1. There is a rightway and a wrongway.

Air Traffic Control Flow Management Automation Final Report 5 of 7

Generalrequlrementa

progressbutthengetboggeddown.Ibelievethisisfrequentlybecauseofalackof

attention to the structural foundation of the software. It is frequently tempting to take
shortcuts to develop specific capabilities as fast as possible but this approach is sure to
cause problems in the furore years of the projecL Conversely any (perceived) extra
effort spent in the early stages of a project creating general structures that can be built
on in the later stages of the project usually pays out handsomely in increased productiv-
ity through the advanced stages.

An articleintheSpring1992issueofSunProgrammeridentifiedtwo characteristicsof

goodsoftware.One isconcisenessandtheotherisleverage.Concisenessisimportant

forseveralreasons.Concisecodeisgenerallyeasiertolearnandmodify.Usuallycode

writteninaconcisefashionisalsoefficient.Itispossibletoprograminacrypticfashion

whichmay resultinconcisecodethatisnoteasytomaintainbutthisisnotgenerally

u'ue.Thisisbecausewritingconciselygeneralrequiresmorethoughtintotheconstruc-

tionofthecodeanditsflow.Itishardtowriteconcisecodeatthefirstattempt.Writing
conciselygenerallymeansgoingoverthecodeseveraltimescontinuouslyimprovingit,

weedingoutinefficientconstructs,seeingglobalpatternsthatallowamoregeneralcon-

struction,etc.Inthisway itisverysimilartowritingprose.Itisacceptedthatinproseit

is necessary to review the text and revise it a number of times in order to improve it and
make it clearer. Why not apply the same criteria to software7

The article quotes Newton as saying, "If I have seen farther than others, it is because I
have stood on the shoulders of giants." We have already discussed one aspect of lever-
age: using system resources to their fullest. Building broad structures also provides a
sort of built in leverage. If written correctly, many aspects of the software being devel-
oped should be reusable in many different ways. In some ways this is related to the con-
ciseness issue in that it is hard to write code that is easily reusable the first time through.
It general takes going over the code several times refining it at each pass. Patterns
become obvious in hindsight and the code can be rewritten in ways that allow the com-
mon elements to be combined and reused. This theme of revisiting code and making
constant improvements is a very important aspect of software development. Most use-
ful, long lived, widely distributed pieces of code have usually been developed in this
fashion. This concept is particularly applicable to research environments and leads to
the conclusion discussed in the next section.

2.8 Top Down Design, Not!

Very rarely is a system truly designed in a top down approach, particularly in systems
that are primarily of a research nature. Given a tittle thought this makes sense. Fre-

quently software systems start out trying to address poorly understood problems that are
felt to be amenable to some kind of computer based solution. An initial attempt is made
at providing tools to address the concerns. Generally this first attempt generates a lot of
additional ideas and discussion and provide insights that lead to further refinements of
the system as well as possibly the development of entirely new concepts which were not
obvious until a prototype or simulation of the system was available that could be inter-
acted with. At this stage the system architecture and tool functionality can be refine or
redone to incorporate the understanding gained from the first stage.

Whetherthesoftware needstolargelyrewrittenorcanevolveto amorecapablesystem

largelydependson how thefoundationswerebuiltintheearlierstages.Itisgenerally

6 of 7 Air Traffic Control Flow Management Automation Final Report

Conclualon

2.9

possible to anticipate overall needs of a system and to build in the expansion potential
needed for the inevitable future growth. Certain portions of the software can possibly be
identified at various stages whose functionality is understood well enough to separate
out from the body of software still undergoing development. This code is now a candi-
date for a "top down design". But in essence the software has really already been
designed and what is really being accomplished is top down documentation. Because

the system has been developed and tested over a period of time the functionality
required has developed through interaction with users and will therefore lead to a robust

top down description. This description (design) then serves as a guide to the developers
in accomplishing the necessary changes when rewriting the relevant portion of the soft-
ware system.

Recognize the programmers.

The preceding discussion should make clear the important role the programmers have in
the creation and evolution of a computer based software system. In the past when com-
puter systems were less accessible and resources more limited it was common to have a

staff dedicated to maintaining the computer and operating system and providing access
to its resources. With the advent of workstations and the tremendous capabilities being
placed on the desks of the engineer/developer has also come the added responsibilities
of maintaining and using these greater resources. In essence the greater capabilities have
led to being able to develope much more capable systems with fewer staff but the
demands placed on this staff are also much greater.

The areas that the developers need to be proficient include general system software,
graphics and windows, database, inter-process communication, real time operation, etc.
This is very different from the days in which software tended to be more of a straight
line, algorithmic approach with a programmer working direcdy for a researcher to
implement solutions to scientific computation problems. Current software systems tend
to be very complex with the software architecture itself being part of the design require-
ments. Frequently the researcher and programmer tend tobe the same person. At the
very least the researcher needs to familiar enough with software design issues to be able
to work with a programmer to come up with feasible solutions to specific problems that
lake into account the complexities inherent in implementing, maintaining, and extend-
ing the software.

3.0 Conclusion

The development of operational prototype software has a unique set of requirements.
This report has summarized the lessons learned in developing the CTAS software. At
this juncture certain CTAS components have been deemed ready for operational devel-
opment. Work is commencing on a "hardened" CTAS that will be capable of being used
as an operational tool at ATC facilities.

Air Traffic Control Flow Management Automation Final Report 7 of 7

